Tumor Vasculature Targeted Photodynamic Therapy for Enhanced Delivery of Nanoparticles
نویسندگان
چکیده
Delivery of nanoparticle drugs to tumors relies heavily on the enhanced permeability and retention (EPR) effect. While many consider the effect to be equally effective on all tumors, it varies drastically among the tumors' origins, stages, and organs, owing much to differences in vessel leakiness. Suboptimal EPR effect represents a major problem in the translation of nanomedicine to the clinic. In the present study, we introduce a photodynamic therapy (PDT)-based EPR enhancement technology. The method uses RGD-modified ferritin (RFRT) as "smart" carriers that site-specifically deliver (1)O2 to the tumor endothelium. The photodynamic stimulus can cause permeabilized tumor vessels that facilitate extravasation of nanoparticles at the sites. The method has proven to be safe, selective, and effective. Increased tumor uptake was observed with a wide range of nanoparticles by as much as 20.08-fold. It is expected that the methodology can find wide applications in the area of nanomedicine.
منابع مشابه
Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities
Photodynamic therapy (PDT) has emerged as one of the important therapeutic options in the management of cancer and other diseases. PDT involves a tumor-localized photosensitizer (PS), which when appropriately illuminated by visible light converts oxygen into cytotoxic reactive oxygen species (ROS), that attack key structural entities within the targeted cells, ultimately resulting in necrosis o...
متن کاملA tissue factor-cascade-targeted strategy to tumor vasculature: a combination of EGFP-EGF1 conjugation nanoparticles with photodynamic therapy
Tumor requires tumor vasculature to supply oxygen and nutrients so as to support its continued growth, as well as provide a main route for metastatic spread. In this study, a TF-cascade-targeted strategy aiming to disrupt tumor blood vessels was developed by combination of TF-targeted HMME-loaded drug delivery system and PDT. PDT is a promising new modality in the treatment of cancers, which em...
متن کاملPhotodynamic Therapy Induced Enhancement of Tumor Vasculature Permeability Using an Upconversion Nanoconstruct for Improved Intratumoral Nanoparticle Delivery in Deep Tissues
Photodynamic therapy (PDT) has recently emerged as an approach to enhance intratumoral accumulation of nanoparticles. However, conventional PDT is greatly limited by the inability of the excitation light to sufficiently penetrate tissue, rendering PDT ineffective in the relatively deep tumors. To address this limitation, we developed a novel PDT platform and reported for the first time the effe...
متن کاملNanotechnology; its significance in cancer and photodynamic therapy
In the last decade, developments in nanotechnology have provided a new field in medicine called “Nanomedicine”. Nanomedicine has provided new tools for photodynamic therapy. Quantum dots (QDs) are approximately spherical nanoparticles that have attracted broad attention and have been used in nanomedicine applications. QDs have high molar extinction coefficients and photoluminescence quantum yie...
متن کاملNanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review.
Photodynamic therapy (PDT) is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS) is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs) with low water solubility, which co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014